Today's short post from sciencedaily.com (see link below) talks about endoplasmic reticulum stress (ER stress), which is a biological process that drives nerve pain. You may wonder what that is but it's so complex that attempting an explanation here would serve no purpose (even if I could). Suffice it to say that it is molecular stress that seems to initiate neuropathic pain and scientists are now searching for drugs that will block it (ER stress blockers). Every now and then you have to hold your hand up and say: 'I haven't a clue what this means but it shows progress and I hope the hell that it leads to a drug breakthrough'!
Key mechanism that causes neuropathic pain found
University of California - Davis July 7, 2015
Scientists at the University of California, Davis, have identified a key mechanism in neuropathic pain. The discovery could eventually benefit millions of patients with chronic pain from trauma, diabetes, shingles, multiple sclerosis or other conditions that cause nerve damage.
A biological process called endoplasmic reticulum stress, or ER stress, is the significant driver of neuropathic pain, said lead researchers Bora Inceoglu of the UC Davis Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, and Ahmed Bettaieb, Department of Nutrition. The work is published July 6 in the journal Proceedings of the National Academy of Sciences.
"This is a fundamental discovery that opens new ways to control chronic pain," said co-author Bruce Hammock, distinguished professor at the UC Davis Department of Entomology and Nematology and the UC Davis Comprehensive Cancer Center.
"We can now specifically search for agents to control ER stress and its downstream pathways," Hammock said. "This search is already underway in a number of laboratories working on cancer and other diseases."
Working with Professor Fawaz Haj of the UC Davis nutrition department, Bettaieb found that key molecular signatures associated with diabetes and diabetic pain were linked to ER stress. Neuropathic pain is a common consequence of both Type 1 and Type 2 diabetes, affecting up to 70 percent of patients.
Inceoglu, working in Hammock's laboratory, showed that neuropathic pain could be initiated by compounds that cause ER stress and reversed by agents that block it.
The researchers had previously shown that a class of natural bioactive lipids has powerful analgesic effects in the body. These analgesic lipids are broken down in the body by an enzyme, soluble epoxide hydrolase. The team was able to show that blocking soluble epoxide hydrolase blocks ER stress and associated neuropathic pain.
The work sheds new light onto at least one biological process that mediates neuropathic pain, Inceoglu said. With this knowledge, researchers can now test ER-stress blocking drugs in the clinic, and carry out fundamental research on how different types of pain grouped under the name "neuropathic" differ from each other and respond to new drugs.
The study provides convincing evidence for a novel concept as to what causes neuropathic pain said John Imig, professor of pharmacology and toxicology at the Medical College of Wisconsin, Milwaukee, who was not involved in the study. The work provides new opportunities for drugs or drug combinations to treat chronic pain, he said.
Story Source:
The above post is reprinted from materials provided by University of California - Davis. Note: Materials may be edited for content and length.
Journal Reference:
Bora Inceoglu, Ahmed Bettaieb, Carlos A. Trindade da Silva, Kin Sing Stephen Lee, Fawaz G. Haj, Bruce D. Hammock. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proceedings of the National Academy of Sciences, 2015; 201510137 DOI: 10.1073/pnas.1510137112
https://www.sciencedaily.com/releases/2015/07/150707093353.htm
No comments:
Post a Comment
All comments welcome but advertising your own service or product will unfortunately result in your comment not being published.