Monday 30 April 2018

Delivering Electrical Current Directly To Block Nerve Pain Signals

Today's post from sciencedaily.com (see link below) looks at a new development in the field of electrical devices aimed at inhibiting nerve pain signals. Now most people living with neuropathy will have heard about various electro-stimulation devices over the years. most aimed at doing precisely the same but these have proved to be very much hit and miss regarding effectiveness and often deliver unpleasant nerve sensations as a by-product. This new device will be implantable and will deliver electric current directly to the nerve cells, not just to the area, something which has always been thought to be unsafe. The main advantage of this new finding is that the current can be delivered far more accurately to shut out pain signals. You need to read the article to get a full picture of how it works and of course, this product is not yet available (sigh!) but it is very promising. Sciencedaily.com tends to publish reliable information, so it's worth taking seriously and looking out for in the future.

Direct electrical current used to preferentially inhibit pain-transmitting neurons 


Date:April 18, 2018 Source:Johns Hopkins Medicine


Gene Fridman (left) and Yun Guan examine a prototype of a device that delivers direct current safely.
Credit: Johns Hopkins Medicine


Using computer models and laboratory rats, Johns Hopkins researchers have demonstrated that "direct electrical current" can be delivered to nerves preferentially, blocking pain signals while leaving other sensations undisturbed.


The researchers say the experiments advance the search for improved implantable devices able to treat chronic pain that is due to peripheral nerve injury or disease.

"We have developed a potential new concept for neural implants that works differently than conventional electrical stimulators," says Gene Fridman, Ph.D., M.S., assistant professor of otolaryngology -- head and neck surgery and biomedical engineering at the Johns Hopkins University School of Medicine. "We believe we are the first to investigate the idea of using this concept for implantable medical devices that use direct electrical current, long thought to be unsafe."

Implantable spinal cord stimulators and peripheral nerve stimulators designed to interrupt nerve pain impulses were developed more than 30 years ago, but the devices work by interacting with sensory nerve cells, leading to numbness, tingling and other side effects.

In a report on the new findings, published online April 11 in Science Advances, the researchers say direct electrical current devices would allow for more precise, preferential targeting of the appropriate pain-transmitting nerve cells, making them more effective for pain suppression and reducing the side effects of conventional devices.

Traditionally, direct current -- or single-direction streaming electrical signaling -- has been considered unsafe for medical devices that deliver electrical stimulation in the body. The continual flow of electrical current results in chemical reactions at the site of the electrodes delivering the signal, causing gas bubbles, corrosion and toxic byproducts to form.

All modern implantable electrical stimulation devices use alternating current pulses instead, in which the electrical current switches back and forth very quickly in a circuit between positive and negative voltage. Such rapid pulses allow the devices to interact with the nervous system but don't create the toxic chemical reactions.

In 2013, Fridman and his team reported on successful efforts to develop an ionic direct current system, which converts the "safe" pulses like those delivered in the conventional stimulator into direct ionic current that may potentially be applied to the body safely.

To find out if the modified system of direct ionic current could be safely used to preferentially target and silence pain-transmitting neurons, Fridman teamed up with pain researcher Yun Guan, M.D., Ph.D., an associate professor of anesthesiology, critical care medicine and neurological surgery at the Johns Hopkins University School of Medicine.

When nerve cells receive a signal of pain or other sensation, the signal opens sodium channels and floods the cell with positively charged sodium ions, which positively charge the neurons until the electrochemistry changes enough to inactivate the channels and close them.

This change in electrical charge of the neuron is what propagates and sends the signal to the spinal cord and then to the brain to register as a sensation, such as pain or pressure.

Each nerve in mammalian arms and legs contains multiple sensory neurons (nerve cells) transmitting pain and other sensations such as touch or feeling to the spinal cord. Fridman and Guan realized that the pain and "feeling" sensory neurons each contained different kinds of sodium channels and that it may be possible to block one kind of channel and not the others to prevent patients from feeling pain but not other sensations.

Fridman and Guan's team first devised a computer model to try to predict what happens when researchers use direct current to block the pain signals or inhibit other sensory neurons. In the model they sent negatively charged direct current to the nerves to weaken their activity. The model showed that the sodium channels 1.6 in the feeling sensory neurons were blocked with 670 microamperes, but the pain neuron's sodium channels 1.7 were blocked at only 290 microamperes. For comparison, holding a 9-volt battery to the tongue delivers approximately 2,000 microamperes, causing a small shock. This suggested to the researchers that it was theoretically possible to preferentially target one type of neuron over another, since the channels could be blocked at different levels of current.

Next, working with anesthetized rats, they sent direct ionic current into the sciatic nerve in the legs and, using neural recording electrodes, recorded whether this current inhibited the activity of individual or groups of neurons at the spinal cord.

In a series of experiments, they increased the current in two-minute increments from 0.1 to 0.2, 0.4 and 0.8 milliamperes. The current at 0.8 milliamperes completely blocked the response of the pain-transmitting neurons. Although signals from the feeling sensory neurons were reduced by 20 percent, they were still active and sending sensation signals to the spinal cord. After the current was stopped, the signal from the pain-transmitting neurons remained blocked for another two minutes, whereas the signal from the feeling sensory neurons quickly came back.

"Using direct current, we can inhibit the pain-transmitting neurons at much lower amplitudes than the feeling sensory neurons, allowing us to be preferential in how we target the nerve," says Guan. "We also found that because the pain neurons take longer to come back on line, we may be able to conserve energy and not have to deliver this electrical current constantly to keep them blocked."

Being able to deliver this current periodically rather than constantly would mean longer use of the neural implant before needing to recharge the battery, says Guan.

Guan cautions that more studies will be needed to verify safety and measure the strength and duration of pain relief before direct ionic current devices could be used for people.


Story Source:

Materials provided by Johns Hopkins Medicine. Note: Content may be edited for style and length.

Journal References:

Fei Yang, Michael Anderson, Shaoqiu He, Kimberly Stephens, Yu Zheng, Zhiyong Chen, Srinivasa N. Raja, Felix Aplin, Yun Guan, Gene Fridman. Differential expression of voltage-gated sodium channels in afferent neurons renders selective neural block by ionic direct current. Science Advances, 2018; 4 (4): eaaq1438 DOI: 10.1126/sciadv.aaq1438


https://www.sciencedaily.com/releases/2018/04/180418092026.htm

No comments:

Post a Comment

All comments welcome but advertising your own service or product will unfortunately result in your comment not being published.